離散幾何学講義

離散幾何学講義

原書名 Lectures on Discrete Geometry
著者名 岡本 吉央
発行元 丸善出版
発行年月日 2005年11月
判型 B5変
ページ数 504ページ
ISBN 978-4-621-06624-9
Cコード 3041
ジャンル 数学・統計学

内容紹介

離散幾何学とは、有限個の点、直線、円、平面、凸集合といった対象を扱い、その「組合せ的」な性質を追究する幾何学。たとえば「n個の直線で平面を分割するとき、領域の数は最大いくつになるか?」のような問題を考える。基礎的な事項を解説することから始め、重要なトピックスを精選し、図を豊富に用いて詳細に議論を展開。接続問題や(p,q)―定理など、最近の話題も数多く取り上げている。原著の出版以降、特に発展がめざましかった距離空間の近似埋め込みについては、著者により新たに2つの節が、この日本語版のために書き下ろされている。

目次

第1章 凸性の理論
  1.1 線形部分空間,アフィン部分空間,一般の位置
  1.2 凸集合,凸結合,分離定理
  1.3 Radonの補題とHellyの定理
  1.4 中心点定理とハム・サンドイッチ定理
第2章 格子とMinskowskiの定理
  2.1 Minskowskiの定理
  2.2 一般の格子
  2.3 数論での応用
第3章 凸独立部分集合
  2.1 Erdos-Szekeresの定理
  3.2 Horton集合
4章 接続問題
  4.1 問題の定式化
  4.2 接続問題と単位距離の下界
  4.3 点ー直線接続対と交差数
  4.4 相異距離と交差数
  4.5 点―直線接続対とカッティング
  4.6 カッティング補題の弱いバージョン
  4.7 カッティング補題:タイトな上界
第5章 凸多面体
  5.1 幾何的相対性
  5.2 H―多面体とV―多面体
  5.3 凸多面体の面
  5.4 面の数:巡回多面体
  5.5 上限定理
  5.6 Gale 変換
  5.7 Voronoi図
第6章 アレンジメントにおける面の数
  6.1 超平面アレンジメント
  6.2 その他の幾何的対象のアレンジメント
  6.3 k 以下レベルの頂点数
  6.4 ゾーン定理
  6.5 カッティング補題再訪
第7章 下側エンベロープ
  7.1 線分アレンジメントとDavenport-Schinzel列
  7.2 線分集合の下側エンベロープの超線形複雑さ
  7.3Davenport-Schinzel列に戻って
  7.4 線分に対するタイトな上界に向けて
  7.5 高次元へ上がると:空間における三角形
  7.6 平面上の曲線
  7.7 代数曲面パッチ
第8章 凸集合の交わりパターン
  8.1 分数版Hellyの定理
  8.2 彩色版Caratheodoryの定理
  8.3 Tverbergの定理
第9章 幾何的選択定理
  9.1 第一選択補題
  9.2 第二選択補題
  9.3 順序タイプと同タイプ補題
  9.4 ハイパーグラフの正則性補題
  9.5 正比率選択補題
第10章 横断理論とε-ネット
  10.1 一般的な準備:横断とマッチング
  10.2 ε-ネットとVC次元
  10.3 VC次元の有界性と応用
  10.4 凸集合に対する弱ε-ネット
  10.5 Hadwiger-Debrunner の (p,q )―問題
  10.6 超平面横断に対する(p,q )―定理
第11章 点配置におけるk - 集合問題
  11.1 定義と最初の評価
  11.2 等分割辺の数が多い集合
  11.3 Lovaszの補題と全ての次元に対する上界
  11.4 平面に対する上界の改善
第12章 高次元多面体の2つの応用
  12.1 弱理想グラフ予想
  12.2 Burnn-Minkowski の不等式
  12.3 半順序集合のソート
第13章 高次元における体積
  13.1 体積,高次元のパラドックス,ネット
  13.2 体積近似の難しさ
  13.3 体積が大きい多面体の構成法
  13.4 楕円体による凸体の近似
第14章 測度集中と概球面切断
  14.1 球面上の測度集中
  14.2 等周不等式と測度集中
  14.3 Lipschit 関数の集中
  14.4 概球面切断:はじめの一歩
  14.5 中心対称多面体の面の数
  14.6 Dvoretzkyの定理
第15章 有限距離空間のノルム空間への埋め込み
  15.1 導入:近似埋め込み
  15.2 Johnson-Lindenstraussの平坦化補題
  15.3 数え上げによる下界
  15.4 エクスパンダによるタイトな下界
  15.6 Fourier変換によるタイトな下界
  15.7 l ∞ に対する上界
  15.8 Euclid 埋め込みに対する上界
  15.9 近似埋め込みの進展:2002年―2005年
まとめ(各章の要点)
演習問題のヒント
参考文献

定価:8,250円
(本体7,500円+税10%)
在庫:お問い合わせください