
Chapter 12 Lecture

Fundamentals of General, Organic, and Biological Chemistry

8th Edition

McMurry, Ballantine, Hoeger, Peterson

Chapter Twelve

Introduction to Organic Chemistry: Alkanes

Christina A. Johnson University of California, San Diego

© 2017 Pearson Education, Inc.

Outline

- 12.1 The Nature of Organic Molecules
- 12.2 Families of Organic Molecules: Functional Groups
- 12.3 The Structure of Organic Molecules: Alkanes and Their Isomers
- 12.4 Drawing Organic Structures
- 12.5 The Shapes of Organic Molecules
- 12.6 Naming Alkanes
- 12.7 Properties of Alkanes
- 12.8 Reactions of Alkanes
- 12.9 Cycloalkanes
- 12.10 Drawing and Naming Cycloalkanes

Concepts to Review

Covalent Bonds

– Sections 4.1 and 4.2

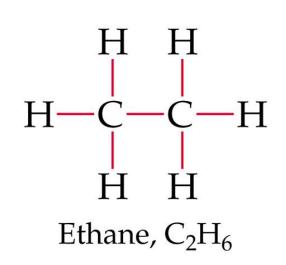
Multiple Covalent Bonds

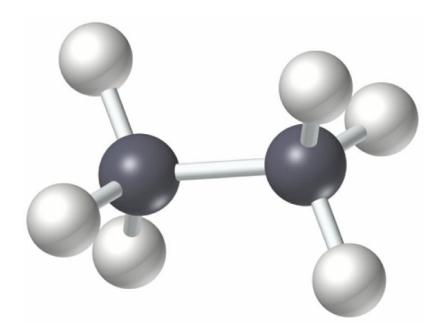
- Section 4.3

Drawing Lewis Structures

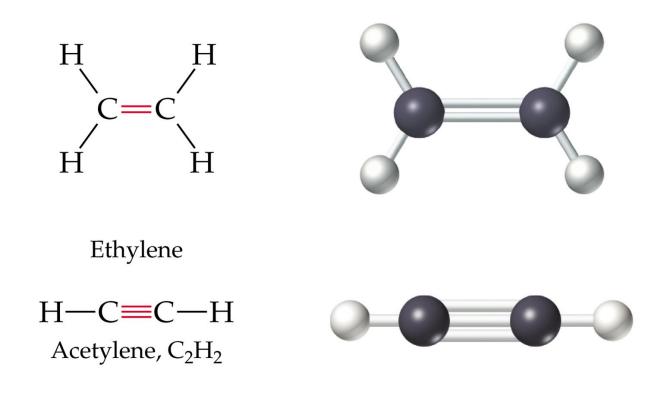
- Section 4.7

• VSEPR and Molecular Shapes

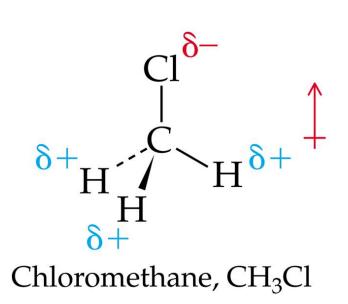

- Section 4.8

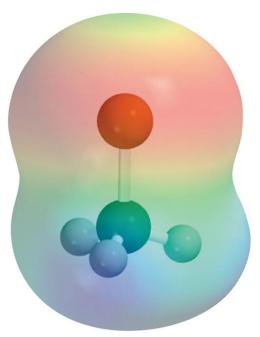

- Polar Covalent Bonds
 - Section 4.9
- Polar Molecules
 - Section 4.10

Organic chemistry: The study of carbon compounds

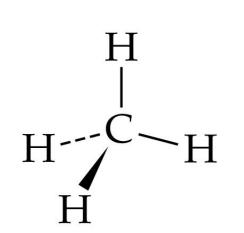

Learning Objective: Identify the general structural characteristics of organic molecules, in particular, the tetravalent nature of carbon and the different ways in which it can be expressed.

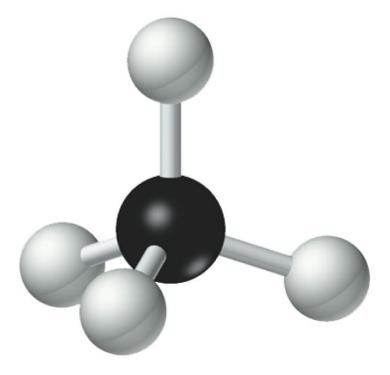
- Carbon is tetravalent; it always forms four bonds.
- Organic molecules have covalent bonds.


 Carbon forms multiple covalent bonds by sharing more than two electrons with a neighboring atom.



In general:


- 1. A carbon that has 4 groups attached will be tetrahedral.
- 2. A carbon that has 3 groups attached will be trigonal planar.
- 3. A carbon that has 2 groups attached will be linear.


 When carbon bonds to a more electronegative element, polar covalent bonds result.

 Organic molecules have specific threedimensional shapes.

 Organic molecules often contain nitrogen and oxygen in addition to carbon and hydrogen.

$\begin{array}{cccc} C-N & C-O & C-H \\ C=N & C=O \\ C\equiv N \end{array}$

- Most organic compounds are insoluble in water.
- Almost all of those that are soluble do not conduct electricity.
- Only small polar organic molecules or large molecules with many polar groups interact with water molecules and, thus, dissolve in water.
- Lack of water solubility for organic compounds has important consequences.

Functional group: An atom or group of atoms within a molecule that has a characteristic physical and chemical behavior

Learning Objectives:

- Define functional group.
- Identify the functional groups in organic molecules.

- Organic compounds can be classified into families according to functional groups (structural features).
- The chemical behavior of family members is often predictable based on these specific groupings of atoms.
- Millions of compounds can be sorted into just a few general families of organic compounds with simple chemical patterns.

- A functional group is usually part of a larger molecule, and a molecule may have more than one class of functional group present.
- A given functional group tends to undergo the same types of reactions in every molecule that contains it.
- The chemistry of an organic molecule is primarily determined by the functional groups it contains, not by its size or complexity.

Family Name	Functional Group Structure*	Simple Example	Line Structure	Name Suffix
Alkane (Chapter 12)	No readily reactive bonds. Contains only C — H and C — C single bonds	CH ₃ CH ₂ CH ₃ Propane	\sim	-ane
Alkene (Chapter 13)	⟩c=c⟨	H ₂ C=CH ₂ Ethylene	$H \to H$	-ene
Alkyne (Chapter 13)	−C≡C−	H—C=C—H Acetylene (Ethyne)	н———н	-yne
Aromatic (Chapter 13)		H = C = C $H = C = C$ $C = C$ $H = H$ $H = H$ $H = H$	\bigcirc	None
Alkyl halide (Chapters 12, 14)	$-\frac{I}{C} - \mathbf{X} (\mathbf{X} = \mathbf{F}, \mathbf{CI}, \mathbf{Br}, \mathbf{I})$	CH ₃ CH ₂ CI Ethyl chloride		None
Alcohol (Chapter 14)	-с <mark>-о-н</mark>	CH ₃ CH ₂ OH Ethyl alcohol (Ethanol)	Лон	-01
Ether (Chapter 14)		$CH_3CH_2 - 0 - CH_2CH_3$ Diethyl ether	$\sim \sim$	None
Amine (Chapter 16)	-c-N	CH ₂ CH ₃ NH ₂ Ethylamine	MH ₂	-amini
Aldehyde (Chapter 15)	н сн	$CH_3 - C - H$ Acetaldehyde (Ethanal)	о Н	-al
Ketone (Chapter 15)		$CH_3 - C - CH_3$ Acetone	Î	-one

Table 12.1 Some Important Families of Organic Molecules

Family Name	Functional Group Structure*	Simple Example	Line Structure	Name Suffix
Carboxylic acid (Chapter 17)	_с_с_он	$CH_3 - C - OH$ Acetic acid	ОН	-ic acid
Anhydride (Chapter 17)		$CH_3 - C - O - C - CH_3$ Acetic anhydride		None
Ester (Chapter 17)		$CH_3 - C - O - CH_3$ Methyl acetate	ОСН3	-ate
Amide (Chapter 17)	$-C - C - NH_{2},$ $-C - C - N - H, -C - C - N - H$	$CH_3 - C - NH_2$ Acetamide	NH ₂	•amide
Thiol (Chapter 14)	-C-SH	CH ₃ CH ₂ SH Ethyl thiol	∕_ _{SH}	None
Disulfide (Chapter 14)	C—S—S—C	CH ₃ SSCH ₃ Dimethyl disulfide	∕s∕ ^s ∕	None
Sulfide (Chapter 14)	C—S—C	CH ₃ CH ₂ SCH ₃ Ethyl methyl sulfide	~s/	None

Table 12.1 Some Important Families of Organic Molecules

The bonds shown in RED refer to the functional group of interest and the atoms required.

*The bonds whose connections are not specified are assumed to be attached to carbon or hydrogen atoms in the rest of the molecule.

- The first four families are **hydrocarbons**, organic compounds that contain only carbon and hydrogen.
 - Alkanes have only single bonds and contain no functional groups.
 - Alkenes contain a carbon–carbon doublebond functional group.

- The first four families are **hydrocarbons**, organic compounds that contain only carbon and hydrogen.
 - Alkynes contain a carbon–carbon triple-bond functional group.
 - Simple *aromatic* compounds contain a sixmembered ring of carbon atoms with three alternating double bonds.

- The next four families have functional groups that contain only single bonds and a carbon atom bonded to an electronegative atom.
 - Alkyl halides have a carbon-halogen bond.
 - Alcohols have a carbon–oxygen bond.
 - *Ethers* have two carbons bonded to the same oxygen.
 - Amines have a carbon–nitrogen bond.

- The next six families contain a carbon-oxygen double bond: *aldehydes, ketones, carboxylic acids, anhydrides, esters*, and *amides*.
- The remaining three families have functional groups that contain sulfur: *thioalcohols* (known simply as *thiols*), *sulfides*, and *disulfides*. These play an important role in protein function.