S6.3 水の酸性度:pKa は14.00か15.74か?

溶液中における酸の酸性度は pK_a で表される. 通常は水溶液中の溶質の酸解離定数 K_a で定義され, pK_a で表している. しかし, 水溶液中の水は溶媒であり, 溶媒としての水の pK_a は 14.00 になる(25 °C).

すなわち,酸解離平衡 H₂O + H₂O K_a HO⁻ + H₃O⁺

酸解離定数 $K_a = [HO^-][H_3O^+]/[H_2O]$ において、プロトン供与体(酸)となる水も同じ溶媒の水なので $[H_2O]$ に純溶媒の活量 (1.0)を代入し、水のイオン積を用いると、

 $K_a = 10^{-14}/1.0 = 10^{-14}$ となる.

すなわち、溶媒としての水の $pK_a=14.00$ となり、同じように考えると、 H_3O^+ の $pK_a=0.00$ が導かれる.

結論として,

溶媒としての H_2O の $pK_a = 14.00$, 対応する H_3O^+ の $pK_a = 0.00$ である. (T.P. Silverstein, S.T. Heller, *J. Chem. Educ.* 2017, 94, 690; K.C. Meister, M. Willeke, W. Angst, A. Togni, P. Walde, *Helv. Chim. Acta* 2014, 97, 1 参照.)

しかし、有機化学教科書には H_2O の $pK_a = 15.74$ 、 H_3O^+ の $pK_a = -1.74$ が載っている。それはどういうことなのか?

上の計算では、水は溶質と溶媒に区別できないので、分母の $[H_2O]$ に純溶媒の標準状態としての活量 (1.0) を用いている。一方、一般的な溶質の酸の pK_a は、標準状態として「質量モル濃度 $1 \mod \log$ の仮想的な理想希薄溶液」をとり、 [HA] の活量を HA のモル濃度で近似している。すなわち、標準状態が「水」と「溶質の酸」とで異なるので、これらの pK_a 値を厳密な意味で比較することはできない。

そこで、溶質の標準状態に準じて、水の酸解離定数の式における H_2O を他の酸 (HA) と同じように溶質の酸とみなして、 $[H_2O]$ に濃度 55.5 $mol\ dm^{-3}$ を代入すると $K_a=10^{-14}/55.5=10^{-15.74}$ となる。すなわち、仮想的な水溶媒中の溶質の水の $pK_a=15.74$ として便宜的に他の酸の pK_a と比較することができるが、55.5 $mol\ dm^{-3}$ を希薄溶液の活量として使うのは合理的ではない。

M.L. Cambell と B.A. Waite (*J. Chem. Educ.* **1990**, 67, 386) は,同じ pK_a = 15.74 の結果を次のように導いている.溶質の水を可視化するために"標識された"

 H_2O^* と表して、その p K_a を求める.

溶媒の H_2O に少量の酸としての"標識された" H_2O * がm mol dm⁻³ だけ溶けている状態を考える.

 H_2O^* を微量 m mol だけ 55.5 mol (1 リットル)の水に溶かすと,(体積変化は無視して)溶液中に存在する HO^- , H_2O と H_3O^+ の m/(m+55.5) がそれぞれ "標識された" ものであり,m << 55.5 なので,近似的に m/55.5 が "標識された" ものになっている(これらの化学種は,化学的には"標識された"ものと区別されないものとする). H_2O 中では HO^- の濃度は 25 °C で 1.0 x 10^{-7} mol dm^{-3} だから, $[HO^*]=(1.0$ x $10^{-7})(m/55.5)$ mol dm^{-3} と計算できる.ここで, $[H_3O^+]=1.0$ x 10^{-7} mol dm^{-3} であり, $[H_2O^*]=m$ mol $dm^{-3}-[HO^*-]\approx m$ mol dm^{-3} と近似できる.

したがって、H₂O*の酸解離定数は

$$K_{\rm a} = [{\rm HO^{*-}}][{\rm H}_{\rm 3}{\rm O}^{+}]/[{\rm H}_{\rm 2}{\rm O}^{*}] = (1.0 \times 10^{-7})(m/55.5) (1.0 \times 10^{-7})/m$$

= $(1.0 \times 10^{-7}) (1.0 \times 10^{-7})/55.5 = 1.0 \times 10^{-14}/55.5$

 $pK_a = 14 + \log 55 = 15.74$ となる. これが H_2O の溶質としての pK_a ということになる. 同じように考えれば対応する H_3O^+ の $pK_a = -1.74$ が求められる. したがって、次のように結論できる.

溶質としての H_2O の $pK_a = 15.74$, 対応する H_3O^+ の $pK_a = -1.74$ である.

現実的には溶質の水分子が溶媒と区別できるわけではないので、熱力学的には H_2O の pK_a = 14.00 である. しかし、現実主義的な有機化学者は、他の溶質の酸と pK_a 値を比較する場合には H_2O の仮想的な pK_a = 15.74 を使ってきた. 有機化学教科書には一般的にこのような H_3O と H_3O の pK_a 値が掲載されている.